neurodsp.sim.sim_frac_gaussian_noise

neurodsp.sim.sim_frac_gaussian_noise(n_seconds, fs, exponent=0, hurst=None)[source]

Simulate a timeseries as fractional gaussian noise.

Parameters
n_secondsfloat

Simulation time, in seconds.

fsfloat

Sampling rate of simulated signal, in Hz.

exponentfloat, optional, default: 0

Desired power law exponent of the spectrum of the signal. Must be in the range (-1, 1).

hurstfloat, optional, default: None

Desired Hurst parameter, which must be in the range (0, 1). If provided, this value overwrites the exponent parameter.

Returns
sig: 1d array

Simulated fractional gaussian noise time series.

Notes

The time series can be specified with either a desired power law exponent, or alternatively with a specified Hurst parameter.

The Hurst parameter is not the Hurst exponent as defined in rescaled range analysis. The Hurst parameter is defined for self-similar processes such that Y(at) = a^H Y(t) for all a > 0, where this equality holds in distribution.

The relationship between the power law exponent and the Hurst parameter for fractional gaussian noise is exponent = 2 * hurst - 1.

For more information, consult [1].

References

1

Eke, A., Herman, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of complexity in temporal physiological signals. Physiological Measurement, 23(1), R1–R38. DOI: https://doi.org/10.1088/0967-3334/23/1/201

Examples

Simulate fractional gaussian noise with a power law decay of 0 (white noise):

>>> sig = sim_frac_gaussian_noise(n_seconds=1, fs=500, exponent=0)

Simulate fractional gaussian noise with a Hurst parameter of 0.5 (also white noise):

>>> sig = sim_frac_gaussian_noise(n_seconds=1, fs=500, hurst=0.5)

Examples using neurodsp.sim.sim_frac_gaussian_noise

Simulating Aperiodic Signals

Simulating Aperiodic Signals