neurodsp.sim.sim_poisson_pop¶
- neurodsp.sim.sim_poisson_pop(n_seconds, fs, n_neurons=1000, firing_rate=2, lam=None)[source]¶
Simulate a Poisson population.
- Parameters
- n_secondsfloat
Simulation time, in seconds.
- fsfloat
Sampling rate of simulated signal, in Hz.
- n_neuronsint, optional, default: 1000
Number of neurons in the simulated population.
- firing_ratefloat, optional, default: 2
Firing rate of individual neurons in the population.
- lamfloat, optional, default: None
Mean and variance of the Poisson distribution. None defaults to n_neurons * firing_rate.
- Returns
- sig1d array
Simulated population activity.
Notes
The simulated signal is essentially white noise, but satisfies the Poisson property, i.e. mean(X) = var(X).
The lambda parameter of the Poisson process (total rate) is determined as firing rate * number of neurons, i.e. summation of Poisson processes is still a Poisson processes.
Note that the Gaussian approximation for a sum of Poisson processes is only a good approximation for large lambdas.
Examples
Simulate a Poisson population:
>>> sig = sim_poisson_pop(n_seconds=1, fs=500, n_neurons=1000, firing_rate=2)