neurodsp.spectral.compute_spectrum_medfilt¶
- neurodsp.spectral.compute_spectrum_medfilt(sig, fs, filt_len=1.0, f_range=None)[source]¶
Compute the power spectral density as a smoothed FFT.
- Parameters
- sig1d or 2d array
Time series.
- fsfloat
Sampling rate, in Hz.
- filt_lenfloat, optional, default: 1
Length of the median filter, in Hz.
- f_rangelist of [float, float], optional
Frequency range to sub-select from the power spectrum.
- Returns
- freqs1d array
Frequencies at which the measure was calculated.
- spectrum1d or 2d array
Power spectral density.
Examples
Compute the power spectrum of a simulated time series as a smoothed FFT:
>>> from neurodsp.sim import sim_combined >>> sig = sim_combined(n_seconds=10, fs=500, ... components={'sim_powerlaw': {}, 'sim_oscillation' : {'freq': 10}}) >>> freqs, spec = compute_spectrum_medfilt(sig, fs=500)