neurodsp.spectral.compute_spectrum_wavelet¶
- neurodsp.spectral.compute_spectrum_wavelet(sig, fs, freqs, avg_type='mean', **kwargs)[source]¶
Compute the power spectral density using wavelets.
- Parameters
- sig1d or 2d array
Time series.
- fsfloat
Sampling rate, in Hz.
- freqs1d array or list of float
If array, frequency values to estimate with morlet wavelets. If list, define the frequency range, as [freq_start, freq_stop, freq_step]. The freq_step is optional, and defaults to 1. Range is inclusive of freq_stop value.
- avg_type{‘mean’, ‘median’}, optional
Method to average across the windows.
- **kwargs
Optional inputs for using wavelets.
- Returns
- freqs1d array
Frequencies at which the measure was calculated.
- spectrum1d or 2d array
Power spectral density.
Examples
Compute the power spectrum of a simulated time series using wavelets:
>>> from neurodsp.sim import sim_combined >>> sig = sim_combined(n_seconds=10, fs=500, ... components={'sim_powerlaw': {}, 'sim_oscillation' : {'freq': 10}}) >>> freqs, spectrum = compute_spectrum_wavelet(sig, fs=500, freqs=[1, 30])