neurodsp.sim.sim_powerlaw

neurodsp.sim.sim_powerlaw(n_seconds, fs, exponent=-2.0, f_range=None, **filter_kwargs)[source]

Simulate a power law time series, with a specified exponent.

Parameters:
n_secondsfloat

Simulation time, in seconds.

fsfloat

Sampling rate of simulated signal, in Hz.

exponentfloat, optional, default: -2

Desired power-law exponent, of the form P(f)=f^exponent.

f_rangelist of [float, float] or None, optional

Frequency range to filter simulated data, as [f_lo, f_hi], in Hz.

**filter_kwargskwargs, optional

Keyword arguments to pass to filter_signal.

Returns:
sig1d array

Time-series with the desired power law exponent.

Notes

  • Powerlaw data with exponents is created by spectrally rotating white noise [1].

References

[1]

Timmer, J., & Konig, M. (1995). On Generating Power Law Noise. Astronomy and Astrophysics, 300, 707–710.

Examples

Simulate a power law signal, with an exponent of -2 (brown noise):

>>> sig = sim_powerlaw(n_seconds=1, fs=500, exponent=-2.0)

Simulate a power law signal, with a highpass filter applied at 2 Hz:

>>> sig = sim_powerlaw(n_seconds=1, fs=500, exponent=-1.5, f_range=(2, None))

Examples using neurodsp.sim.sim_powerlaw

Autocorrelation Measures

Autocorrelation Measures

Fluctuation analyses

Fluctuation analyses

Lagged Coherence

Lagged Coherence

Simulating Aperiodic Signals

Simulating Aperiodic Signals

Simulating Combined Signals

Simulating Combined Signals

Modulating Signals

Modulating Signals

Simulating Multiple Signals

Simulating Multiple Signals